
Datacom Network Open Programmability
V100R020C00

Development Guide

Issue 02

Date 2020-12-30

HUAWEI TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com


Contents

1 Basic Knowledge...................................................................................................................... 1
1.1 Understanding Programming Languages and Protocols........................................................................................... 1
1.2 Software Package Structure................................................................................................................................................ 2
1.3 Log Records............................................................................................................................................................................... 2
1.3.1 Viewing Logs......................................................................................................................................................................... 3
1.3.2 Setting the Log Level.......................................................................................................................................................... 3

2 Development Process..............................................................................................................5

3 Development Preparation..................................................................................................... 6

4 Development Environment Deployment........................................................................... 8
4.1 Installing Python......................................................................................................................................................................8
4.2 Installing the Open and Programmable SDK................................................................................................................ 9
4.3 Installing an IDE.................................................................................................................................................................... 10
4.4 Installing Gpg4Win and Generating Key Files for Signature................................................................................. 10
4.5 Installing the Open Programmability Mini Software Package..............................................................................12

5 Developing an SSP Package................................................................................................13
5.1 Creating an SSP Package Template................................................................................................................................ 13
5.2 Developing an SSP Package.............................................................................................................................................. 14
5.2.1 Editing the SSP Configuration File...............................................................................................................................14
5.2.2 Compiling a Service YANG Model................................................................................................................................16
5.2.3 Developing Mapping Code............................................................................................................................................. 19
5.2.4 Developing a Jinja2 Template....................................................................................................................................... 21
5.3 Verifying the SSP Package................................................................................................................................................. 22
5.3.1 Verifying the YANG Files................................................................................................................................................. 22
5.3.2 Performing a Unit Test.................................................................................................................................................... 22
5.4 Developing an SSP Package.............................................................................................................................................. 23

6 Importing and Installing Software Packages................................................................. 25
6.1 System Login.......................................................................................................................................................................... 25
6.2 Importing and Activating a Software Package........................................................................................................... 28

Datacom Network Open Programmability
Development Guide Contents

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. ii



1 Basic Knowledge

This section describes the basic knowledge required for open programmability
system development, including the NETCONF, YANG, Jinja2, Python, and software
package structure.

1.1 Understanding Programming Languages and Protocols

1.2 Software Package Structure

1.3 Log Records

1.1 Understanding Programming Languages and
Protocols

Before performing open programmability development, you need to master the
programming languages and protocols listed in the following table.

Table 1-1 Open programmability programming languages and protocols

Ite
m

Introduction Learning Link

NET
CO
NF

Network Configuration (NETCONF) protocol is a
network device management protocol, which is
similar to SNMP. NETCONF provides a framework
mechanism for adding, modifying, and deleting
network device configurations, and querying
configurations, status, and statistics. NETCONF is a
protocol defined by the IETF for installing,
maintaining, and deleting configuration data on
NEs. NETCONF operations are realized on the
Remote Procedure Call (RPC) layer based on
Extensible Markup Language (XML) data
encoding. Open programmability uses NETCONF
to communicate with NEs.

https://
tools.ietf.org/html/
rfc6241

Datacom Network Open Programmability
Development Guide 1 Basic Knowledge

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 1

https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241


Ite
m

Introduction Learning Link

YAN
G

Yet Another Next Generation (YANG) is a data
modeling language used to model NE
configurations and state data in standard
methods. It is used to model services and NEs and
provides a mechanism for mapping service models
to NE models.

https://
tools.ietf.org/html/
rfc7950

Jinja
2

Jinja2 is a modern and designer-friendly template
engine for Python. Open programmability uses
Jinja2 to quickly process service packets using
templates.

http://
jinja.palletsprojects
.com/en/2.10.x/

Pyth
on

Python is an object-oriented high-level
programming language. Due to its simple syntax,
strong readability, wide application scope, and
smooth learning curve, Python is used as the main
software package development language.

https://
docs.python.org/3/
tutorial/index.html

 

1.2 Software Package Structure
The software packages exported from the OPS include:

● Python software packages
When a Python software package is activated or uninstalled, the package
manager instructs the Python-running container to install or uninstall the
software package, respectively.

Python language

package.zip

|---package ------- folder name, which is the same as the name of the compressed
package.

| |---pkg.json [Mandatory] Package description file.

| |---Python Directory for storing the code developed using Python.

| |--- Code developed using Python

| |---yang Directory for storing the YANG model.

| |---template Directory for storing a template.

| |---resources Directory for storing resources.

| |---doc Directory for storing related documents, which is optional.

1.3 Log Records

Datacom Network Open Programmability
Development Guide 1 Basic Knowledge

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 2

https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
http://jinja.palletsprojects.com/en/2.10.x/
http://jinja.palletsprojects.com/en/2.10.x/
http://jinja.palletsprojects.com/en/2.10.x/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html


1.3.1 Viewing Logs

Log Path

You can view logs at /opt/oss/log/NCECOMMONE/OpenEMTestService/log/
users/${user}.log.

{$user} indicates the login user name, for example, /opt/oss/log/NCECOMMONE/
OpenEMTestService/log/users/admin.log.

Log Format

[transId: first seven digits of a transaction ID] [module: module name] [pkgName:
package name] [serviceName: service name] [deviceId: device ID]log content

Logging Modes in Running and Design States
● Logs in running state: Logs of each user are recorded only in the

corresponding directory under ExtendedRTService. The absolute path of
these logs is /opt/oss/log/NCE/ExtendedPkgRTService.

The name of a user log file is in the format oss.{$group_name}.{$pkg_name
$pkg_version}.trace, for example, oss.group1.helloworld1.0.0.trace.

– {$group_name} indicates the name of the group where the third-party
package developed by users is located.

– {$pkg_name$pkg_version} indicates the name and version of the third-
party package developed by users.

● Logs in design state: In debug mode, user logs are recorded in the specified
paths of ExtendedRTService and OpenEMService.

1.3.2 Setting the Log Level
Log levels can be customized as needed.

Log Configuration File logger.conf

The content of the logger.conf file is as follows:

[logger_user]

level=INFO

NO TE

The log level can be any of the following: DEBUG, INFO, WARN, or ERROR, which is case-
insensitive Log levels can be set dynamically without the need of microservice restart.

Log Configuration File Path

/opt/oss/envs/Product-ExtendedPkgRTService/{$version}/venv-{$group_name}/
Python/{$package_name}/resources

Datacom Network Open Programmability
Development Guide 1 Basic Knowledge

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 3



NO TE

{$version} indicates the version of the microservice ExtendedPkgRTService running in the
current environment.
{$group_name} indicates the name of the group to which the user-developed third-party
package belongs.
{$package_name} indicates the name of the user-developed third-party package.

Datacom Network Open Programmability
Development Guide 1 Basic Knowledge

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 4



2 Development Process

The following figure shows the software package development process.

Figure 2-1 Software package development process

Datacom Network Open Programmability
Development Guide 2 Development Process

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 5



3 Development Preparation

This section describes the resources required for developing software packages.

N
o.

Name Description How to Obtain

1 aoc_api-2.0.0-
py3-
noneany.whl

The open and
programmable SDK is a
set of Python-based
programming interfaces
provided by Huawei. It
contains the base class
NcsService to be
inherited by derived
classes and all interfaces
that may be called.

Log in to https://
devzone.huawei.com/
apistudio/sample/aoc/
apiSdk.html and download
the SDK file.

2 yang-offline-
util.zip

Offline verification tool
for YANG models.

Log in to https://
devzone.huawei.com/
apistudio/sample/aoc/
apiSdk.html and download
the verification tool.

3 Sample code
packages for
open
programming
in typical
scenarios

Sample code packages
for open programming in
typical scenarios, which
facilitate user
customization.

Log in to https://
devzone.huawei.com/
apistudio/sample/aoc/
apiSdk.html and obtain the
required sample code
packages.

Datacom Network Open Programmability
Development Guide 3 Development Preparation

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 6

https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html


N
o.

Name Description How to Obtain

4 Open
programmabil
ity mini
software
package

Provides an open,
programmable, and
lightweight software
package. After
downloading and
installing the software
package, you can
configure devices and
services on the local
computer.

Log in to https://
devzone.huawei.com/
apistudio/sample/aoc/
apiSdk.html and obtain the
software package.

Datacom Network Open Programmability
Development Guide 3 Development Preparation

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 7

https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html


4 Development Environment Deployment

This chapter uses Windows 10 as an example to describe how to deploy a
development environment.

4.1 Installing Python

4.2 Installing the Open and Programmable SDK

4.3 Installing an IDE

4.4 Installing Gpg4Win and Generating Key Files for Signature

4.5 Installing the Open Programmability Mini Software Package

4.1 Installing Python

Downloading and Installation

Visit the Python official website and click Download Python 3.x.x to download
and install the Python parser. During the installation, select Add Python 3.x to
PATH to automatically add the Python installation path to environment variables.
You are advised to install Python 3.8.2. Other versions are not fully tested by
Huawei, and software packages developed using Python of other versions may fail
to be activated.

Verification

After the installation is successful, you can verify the installation.

Step 1 Choose Start. Then, choose Windows System > Command Prompt.

Step 2 Enter python at the current prompt. The command output is as follows.
C:\Users\demo>python
Python 3.8.2 (tags/v3.8.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

----End

Datacom Network Open Programmability
Development Guide 4 Development Environment Deployment

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 8

https://www.python.org/


Manually Configuring Environment Variables
If Add Python 3.x to PATH is not selected during the installation, the installation
path of Python is not automatically added to the environment variables. In this
case, perform the following steps to manually configure the environment
variables:

Step 1 Right-click This PC and choose Properties from the shortcut menu. The System
page is displayed.

Step 2 In the navigation pane, choose Advanced system settings. The System Propertie
window is displayed.

Step 3 On the Advanced tab page, click Environment Variables. The Environment
Variables window is displayed.

Step 4 In the user variables area, double-click Path. The Edit environment variable
dialog box is displayed.

Step 5 Click New and enter the Python installation path or click Browse to select the
Python installation path.

Step 6 Click New and enter Python installation path \Scripts or click Browse to select
the Scripts directory in the Python installation path.

Step 7 Click OK.

Step 8 If the command output is normal, the environment variables are configured
successfully.

----End

4.2 Installing the Open and Programmable SDK
To check whether the configured Python logic meets expected requirements in
offline mode, you need to install the open and programmable SDK and required
third-party dependency packages. The open and programmable SDK is a set of
Python-based programming interfaces provided by Huawei. It contains the base
class NcsService to be inherited by derived classes and all interfaces that may be
called. During the SDK installation, required third-party dependency packages are
automatically downloaded and installed. You need to configure the pip image
source on the local host in advance. After the SDK is installed, all third-party
packages on which SDK depends are also installed on the local host.

NO TE

There is no open-source plan for the open and programmable SDK, which must be installed
by running the .whl installation package on the local host. You can obtain the SDK
installation package from the matching software resource package.

Step 1 Copy the obtained SDK installation package aoc_api-x.y.z-py3-none-any.whl to
the current user directory.

Step 2 Choose Start. Then, choose Windows System > Command Prompt.

Step 3 Run pip install aoc_api-x.y.z-py3-none-any.whl at the current prompt. If
information similar to the following is displayed, the open and programmable SDK
is successfully installed.

Datacom Network Open Programmability
Development Guide 4 Development Environment Deployment

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 9

https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html


C:\Users\demo>pip install aoc_api-2.0.0-py3-none-any.whl
...
...
Successfully installed aoc-api-2.0.0
You are using pip version 18.1, however version 20.2.2 is available.
You should consider upgrading via the 'python -m pip install --upgrade pip' command.

----End

4.3 Installing an IDE

Downloading and Installation

Visit PyCharm website or IntelliJ IDEA website and download and install the
integrated development environment (IDE) with a version applicable to your
operating system.

Configuring the Python Parser

The Python parser must be configured after PyCharm or IntelliJ IDEA installation
so that PyCharm or IntelliJ IDEA can work properly. The following uses PyCharm
as an example to describe how to configure the Python parser.

Step 1 In the Start menu, click JetBrains PyCharm Community Edition to run PyCharm
Community Edition.

Step 2 Use the default settings in the initial settings, and click Skip Remaining and Set
Defaults in the Customize PyCharm dialog box.

Step 3 In the Welcome to PyCharm window, select Settings from the Configure drop-
down list in the lower right corner.

Step 4 In Settings for New Projects, click Project Interpreter. Click the setting button on
the right of the Project Interpreter drop-down list box and select Add.... Select
System Interpreter and select the Python 3.x installation path in Select Python
Interpreter.

Step 5 Click OK. The Project Interpreter list in the Settings for New Projects dialog box
displays the version and path of the installed Python parser and the version
information about the pip and setuptools extension packages.

After the configuration is complete, PyCharm can be used properly.

----End

4.4 Installing Gpg4Win and Generating Key Files for
Signature

GNU Privacy Guard for Windows (Gpg4Win) is a free and open-source tool that
can verify OpenPGP signatures in Windows. The OPS uses this software to sign
software packages.

Datacom Network Open Programmability
Development Guide 4 Development Environment Deployment

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 10

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/idea/download/#section=windows


Downloading and Installation

Visit the Gpg4Win official website and download and install Gpg4Win of the
latest version.

Generating a Signature File

After the installation is complete, perform the following operations to use the
Kleopatra tool to generate an OpenPGP signature file.

Step 1 In the Start menu, click Kleopatra to run the signature tool.

Step 2 Choose File > New Key Pair... from the main menu to run Key Pair Creation
Wizard. Then, click Create a personal OpenPGP key pair.

Step 3 Set Name and Email in Enter Details.

Step 4 Click Advanced Settings. In Key Material, select RSA and set the key length to
3072 bits. Click OK. Then, click Next.

NO TE

Do not select Authentication in the Certificate Usage area.

Figure 4-1 Advanced settings

Step 5 In the Review Parameters window, select Show all details. Confirm the
parameter settings and click Create.

Step 6 When configuring a key pair, set and record the password in the dialog box that is
displayed. Then, click OK. This password will be used when you develop a software
package. Keep it safe.

Datacom Network Open Programmability
Development Guide 4 Development Environment Deployment

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 11

https://www.gpg4win.org/


Step 7 In the Key Pair Successfully Created window, click Make a Backup Of Your Key
Pair to save the private key file to a secure location.

You are advised to name the private key file privkey.asc. When saving the private
key, you need to enter the password set in the previous step.

Step 8 Click Finish to close the Key Pair Creation Wizard dialog box and find the
created key pair in the certificate list. Right-click and choose Export from the
shortcut menu to export the public key file. A public key file needs to be uploaded
when a software package is imported to the OPS.

----End

4.5 Installing the Open Programmability Mini Software
Package

To install the mini software package and start the service, perform the following
steps:

Step 1 Move the obtained open programmable mini software package to a path that
does not contain Chinese characters. It is recommended that the path not contain
too many levels.

Step 2 Decompress the software package to the current directory.

Step 3 Double-click start.bat to start the open programmable mini service. The startup
process takes about 3 to 5 minutes. The CLI cannot be closed after the service is
started and is closed when the service is stopped.

Step 4 Enter https://127.0.0.1:32018/aocwebsite in the address box of the browser and
press Enter. If the open programmability page is displayed, the service is started
successfully.

----End

Datacom Network Open Programmability
Development Guide 4 Development Environment Deployment

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 12

https://devzone.huawei.com/apistudio/sample/aoc/apiSdk.html
https://127.0.0.1:32018/aocwebsite


5 Developing an SSP Package

An SSP package can provide the following functions:

● EasyMap: decomposes network-layer services to NE-layer services. After
devices are managed, the network layer directly delivers services to the
devices.

● RPC: enables users to define functions as needed. The standard NETCONF or
YANG configuration model cannot meet requirements. You can flexibly define
functions, such as query operations.

● Discover: re-organizes NE-layer services into network-layer services. If NE-
layer services exist before devices are managed, re-organize NE-layer services
to the network layer after the devices are managed.

Sample code packages for open programming in typical scenarios have been
uploaded to the open programming developer community of NCE. You can log in
to the community to query and download sample code packages as needed.
Development based on sample code packages improves efficiency and reduces
difficulty. If no suitable sample code package is found, you can download the
default SSP software package from the open programming environment for
development.

When developing an SSP package, protect key information, such as user
passwords, login tokens, sessions, and other personal data. Do not output logs.

This chapter uses a simple example to describe how to develop an SSP package
based on the default SSP package. In this example, the SSP package is used to
create a VPN and bind sub-interfaces to the VPN.

5.1 Creating an SSP Package Template

5.2 Developing an SSP Package

5.3 Verifying the SSP Package

5.4 Developing an SSP Package

5.1 Creating an SSP Package Template
Step 1 Choose Package Repo from the main menu. Then, choose Package Management

from the navigation pane, and click Add on the displayed page.

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 13



Step 2 In the displayed Add dialog box, set the attributes of the software package.

Set Package type based on the software package type. In this example, since an
SSP package is to be developed, select Specific Service plugin from the drop-
down list.

Step 3 Click OK. In the dialog box that is displayed indicating that the software package
is added successfully, click OK. The new software package is displayed in the
software package list.

Step 4 Click  in the Operation column of the software package record to download the
software package to the local PC.

----End

5.2 Developing an SSP Package

5.2.1 Editing the SSP Configuration File
Step 1 Open PyCharm and click Create New Project. The New Project dialog box is

displayed. Expand the Project Interpreter area, confirm the configuration, and
click Create.

Step 2 Decompress the downloaded software pacakge to the directory where the project
is located.

Step 3 In the navigation pane of the IDE, double-click the pkg.json file.

Step 4 Modify the parameters according to the following table.

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 14



Table 5-1 Parameter values in the pkg.json file

Parameter Description Mandat
ory/
Optiona
l

name Software package name. Mandat
ory

version Software package version number. The version
number must be in the xxxx.xxxx.xxxx format. The
value of each x ranges from 0 to 9, and each
segment supports a maximum of four xs.

Mandat
ory

description Package description. Optional

package-type Packet type. Mandat
ory

group Package group information. Optional

producer Provider of the software package. For SND and GND
packets, only the packages with this field being
huawei are supported currently.

Mandat
ory

augment-
isolation

Model range ID, which is a Boolean value and can
only be true or false.

Optional

nce-min-
versions

Minimum version of the OPS to which the package is
compatible with. If this parameter is left empty, the
package is compatible with all versions.

Optional

package-
dependencies

Dependency on third-party packages. If this
parameter is set, the name and version fields must
be specified.

Optional

snd-id SND package ID. This parameter is valid only when
package-type is set to snd, and must be unique for
each SND package.

Optional

devices Information about the device matching the driver,
which is specific to SND and GND packages. This
parameter describes the software package and is not
used for device management. If this parameter is set,
the vendor, device-type, and device-version fields
must be specified.

Optional

service-name Service name, which is specific for SSP packages.
Packages with different names cannot use the same
service name.

Optional

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 15



Parameter Description Mandat
ory/
Optiona
l

hooks Callback mapping information. The hooks
combination must be unique in a single package, but
can be the same in different packages. The snd-id
combination must be unique. Packages with different
names cannot use the same snd-id. If this parameter
is set, the type, key, java-class-name, Python-class-
name, groovy-class-name, and template fields
must be specified. The parameter type needs to be
set to mapping, service-rpc, and discover when you
configure the EasyMap, RPC, and discover functions,
respectively. Multiple hooks can be set when multiple
functions are developed together.

Mandat
ory

 

The following is an example.

{
    "name": "HVPNService",
    "version": "1.0.0",
    "description": "5G",
    "package-type": "ssp",
    "producer": "HUAWEI",
    "service-name":"HVPNService",
    "nce-min-versions":[
        "2.0.0"
    ],
    "hooks": [
      {
        "type": "mapping",
        "key": "HVPNService",
        "Python-class-name": "HVPNService.HVPNService.AocNcs_servicepoint"
      }
    ]
}

----End

5.2.2 Compiling a Service YANG Model
In the navigation pane of the IDE, double-click the HVPNService.yang file in the
yang directory to compile a YANG model. The YANG file is named based on the
value of service-name in the pkg.json file.

EasyMap and Discover

The EasyMap and Discover functions are used to compile a YANG model based on
the northbound input of the service model. Each module and node in the YANG
model generates a northbound UI for users to set parameters.

In the following example, the name, MTU, and DES of the sub-interface along
with the VPN name need to be defined in the YANG model to enable users to set
them on UIs.

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 16



module HVPNService {
    namespace "http://example.com/HVPNService";
    prefix "CreateInterfaceService";

    import huawei-ac-applications {
        prefix app;
    }

    import huawei-ac-nes-device {
        prefix device;
    }

    description
        "The module for HVPNService example.";

    revision 2018-12-09 {
        description "Initial revision.";
    }

    augment "/app:applications"{
        list hvpnService {
             /*app:application-definition defines a servicepoint that can be identified by the system.
            The value of servicepoint must be the same as the value of the key field in the hooks parameter in 
the pkg.json file. */
            app:application-definition "HVPNService";
            key "instanceName";
            leaf instanceName {
                type string;
            }
            list deviceList {
                key "deviceName";
                leaf deviceName {
                   type leafref {
                       path "/device:nes/device:ne/device:operate-name";
                   }
                   mandatory true;
                }
            }
            leaf name {
                type string;
            }

            leaf des {
                type string;
            }

            leaf mtu {
                type int32 {
                   range "46..9600";
               }
            }

            leaf vpn_instance_name {
                type string;
            }
        }
    }
}

RPC
If the standard NETCONF or YANG configuration model cannot meet
requirements, you can customize RPC functions by defining the function input and
output. RPC is used to define one-off operations that do not require data saving,
such as the ping command.

    rpc service-rpc
    {

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 17



        description "get devices by device group id RPC";

        input 
        { 
            leaf ne-id
            {
    description "device ne id.";
                type string;
            }
        }

        output
        {
        list aoc-ecs-output{
            leaf result {
                type string;
            }
            list output-attribute-map {
                  leaf name{
                       type string;
                    }
                  leaf value{
                       type string;
                    }
                }
            }
        }
    }

Customized Model Permission
By writing a permission control file, you can customize operation permissions on
nodes in YANG models. After a software package is successfully installed, the
permission information is dynamically injected to the OPS. The user management
function allows users with different responsibilities to be granted with appropriate
permissions, preventing unauthorized and insecure operations. Permissions on
software package models are automatically assigned to the default role whereas
permissions assigned to user-defined roles need to be configured manually.

You can add the permission.json file to the resources directory and customize
permissions on nodes in YANG models. If you have not written the
permission.json file, the OPS automatically generates a level-0 permission control
file for each module based on the YANG file during software package loading. The
permission control file includes the create, delete, read, update, and execute
permissions.

The OPS supports permission-based operations on container and list nodes in
YANG models. You can define permissions on these nodes as needed.
Customization of permissions at levels 0, 1, and 2 is supported. Level 0 indicates
the permission control at the module level. If a user does not match permissions,
the OPS executes permission control at level 0 by default. At level 1, a container or
list node has only one level and does not have subnodes. At level 2, a container or
list node has two levels and subnodes. During permission control, the OPS
matches permissions based on the longest match rule. That is, permissions at a
deeper level are matched first.
{
    "modules": [
    {
        "module-name":"hbng",
        "operations": [
        {
            "uri-pattern":"containerA",

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 18



            "method":" create/delete/read/update "
        },
        {
            "uri-pattern":"listA",
            "method":" create/delete/read/update "
        },
        {
            "uri-pattern":" listA/listC",
            "method":" create/delete/read/update"
        },
        {
            "uri-pattern":"resetStatictic",
            "method":"exec"
        }
        ]
    }
    ]
}

5.2.3 Developing Mapping Code
In the navigation pane of the IDE, double-click the .py file in the Python directory
and write code using Python to implement the EasyMap, RPC, or Discover function
logic.

EasyMap
To implement the EasyMap function, derived classes need to inherit the NcsService
base class and override the ncs_map method to implement the service logic.

# (Mandatory) Import the NcsService class. NcsService is the parent class provided by aoc_api for the SSP 
package to inherit.
from aoc import NcsService, devicemgr

# AocNcs_servicepoint inherits NcsService and overrides the ncs_map method.
class AocNcs_servicepoint(NcsService):
    # Override the ncs_map method to obtain the ifNumb and ParentName parameters required for creating 
an interface.
    def ncs_map(self, request, aoccontext=None, template=None):
        self.getIfNumb(request)
        self.getParentName(request)

        """
        The render function is used to map services at the network layer to the NE layer. request.xmldictnode 
is the encapsulated northbound data, 
        and HVPNService/servicepoint.j2 is the NE-layer template.
        """
        return self.render('HVPNService/servicepoint.j2', request.xmldictnode)

    # Define the getIfNumb function to obtain ifNumb from the created sub-interface and update it to the 
parameter dictionary.
    def getIfNumb(self, request):
        # To obtain node data in the YANG model, you can use the x.y.z method to operate the data.
        sub_if_name = request.xmldictnode.hvpnService.name
        pointIndex = sub_if_name.find('.')
        ifNumb = sub_if_name[pointIndex + 1:]
        request.xmldictnode.update({"ifNumber": ifNumb})

    # Define the getParentName function to obtain ParentName from the created sub-interface and update 
ParentName to the dictionary.
    def getParentName(self, request):
        sub_if_name = request.xmldictnode.hvpnService.name
        pointIndex = sub_if_name.find('.')
        parentName = sub_if_name[0:pointIndex]
        request.xmldictnode.update({"parentName": parentName})

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 19



RPC

When a user customizes the RPC function, derived classes need to inherit the
NcsService base class and override the ncs_rpc method to implement the
customized function logic based on service requirements. In this case, the
processing result can be returned.

# (Mandatory) Import the NcsService class. NcsService is the parent class provided by aoc_api for the SSP 
package to inherit.
from aoc import NcsService

class AocNcsexample(NcsService):
    def ncs_rpc(self, asrequest, arg1, arg2):
        ...
        return result

Discover

To implement the Discover function, derived classes need to inherit the NcsService
base class and overwrite the Discover method to implement the service logic.

# (Mandatory) Import the NcsService class. NcsService is the parent class provided by aoc_api for the SSP 
package to inherit.
from aoc.ncs.ncsservice import NcsService
from aoc.ncs.ncs_model_pb2.discover_pb2 import DiscoverOutput
from aoc.sys import datastore

class AocNcsAaaService(NcsService):
     def ncs_map(self, request, aoccontext=None, template=None):
         self.logger.info(request.xml)
         result = self.render('template_Aaa.j2', request.xmldictnode)
         self.logger.info(result)
         return result

     def discover(self, discoverInput, aoc_context):
         self.logger.info(discoverInput)
         self.logger.info(aoc_context)
         
# Obtain device information from the input.
         deviceId = discoverInput.deviceInfo[0].deviceId
         deviceName = discoverInput.deviceInfo[0].deviceName

# Construct env.
         env = dict()
         env['device'] = deviceName

# Read the device RDB.
         path = '/huawei-ac-nes:inventory-cfg/nes/ne/' + deviceId + '/huawei-aaa:aaa/lam/users'
         users = datastore.read_datastore_rdb(aoc_context, path)
         root = self.xmltodictnode(users)
         result = DiscoverOutput()

# Parse the RDB result.
         for user in root.users.user:
             self.parse_rdb_user(env, user, result)
         self.logger.info(result)
         return result

     def parse_rdb_user(self, env, user, result):
         aaamin = result.serviceConfig.add()
         aaamin.servicePath = '/huawei-ac-applications:applications/aaamini:aaamini/' + user.userName
         env['username'] = user.userName
         env['password'] = user.password
         aaamin.serviceData = self.render('aaamin-discover.j2', env)

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 20



5.2.4 Developing a Jinja2 Template
There are two approaches to developing a Jinja2 template:

● If a device has been managed, obtain NETCONF packets delivered to the
device through the NE management function and then deduce the Jinja2
template of corresponding services.

● Create a Jinja2 template based on the YANG model. This approach is suitable
for experienced developers.

The following is an example of deducing the Jinja2 template of a service through
NETCONF packets.

1. On the NE Management page, create a sub-interface and a VPN instance on
a specified device.

2. Then, check the NETCONF packets to be delivered through the dry-run
capability provided by the open programmability system.

3. Deduce a Jinja2 template or even YANG model of the service based on the
obtained NETCONF packets.

Perform the following operations.

Step 1 Choose Device Configuration > Device Configuration from the main menu.. Go
to the Device Management page and click the Modify button on the device to be
configured.

Step 2 In the Device Management navigation pane, click huawei-ifm. In the Interface
area, click Add, enter the interface name, and click Create.

Step 3 In the Device Management navigation pane, click huawei-l3vpn. In the
l3vpnInstance area, click Add, enter the VRF name, and click Create.

Step 4 Click Dry-Run in the upper right corner to view and copy the content of the
NETCONF packets to be delivered to the device.

Step 5 Paste the copied NETCONF packet content to the servicepoint.j2 file in the
template directory of the SSP package.

Step 6 Modify the Jinja2 template based on service requirements. If the parameters are
obtained from the northbound input, change the parameters to variables. If a
parameter is set to a fixed value, use a constant.

Step 7 The following is an example of the developed Jinja2 template.
<inventory-cfg xmlns="urn:huawei:yang:huawei-ac-nes">
    <nes>
        {% for neName in hvpnService.deviceList %}
        <ne>
            <neid>{{neName.deviceName| to_ne_id}}</neid>
            <ifm xmlns="http://www.huawei.com/netconf/vrp/huawei-ifm">
              <interfaces>
                <interface>
                  <ifName>{{hvpnService.name}}</ifName>
                  <ifNumber>{{ifNumber}}</ifNumber>
                  <ifMtu>{{hvpnService.mtu}}</ifMtu>
                  <ifParentIfName>{{parentName}}</ifParentIfName>
                  <ifClass>subInterface</ifClass>
                  <ifDescr>{{hvpnService.des}}</ifDescr>
                </interface>
              </interfaces>
            </ifm>

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 21



            {%- if hvpnService.vpn_instance_name %}
            <l3vpn xmlns="http://www.huawei.com/netconf/vrp/huawei-l3vpn">
              <l3vpncomm>
                <l3vpnInstances>
                  <l3vpnInstance>
                    <vrfName>{{hvpnService.vpn_instance_name}}</vrfName>
                    <l3vpnIfs>
                      <l3vpnIf>
                        <ifName>{{hvpnService.name}}</ifName>
                      </l3vpnIf>
                    </l3vpnIfs>
                  </l3vpnInstance>
                </l3vpnInstances>
              </l3vpncomm>
            </l3vpn>
            {%- endif %}
        </ne>
        {% endfor %}
    </nes>
</inventory-cfg>

----End

5.3 Verifying the SSP Package

5.3.1 Verifying the YANG Files
After an SSP package is developed, you can use the YANG model verification tool
to verify the validity of the YANG files in the SSP package.

Step 1 Decompress yang-offline-util.zip.

Step 2 Copy the YANG model files in the yang directory of the SSP package to the
directory where yang-offline-util.zip is decompressed.

Step 3 Run the following command to check whether the YANG files are correct:

C:\Users\demo\yang-offline-util>java -jar yang-offline-util.jar validate console
path .

If the command output is empty, the YANG file format is correct.

C:\Users\demo>cd yang-offline-util
C:\Users\demo\yang-offline-util>Java -jar yang-offline-util.jar validate console path .
C:\Users\demo\yang-offline-util>

----End

5.3.2 Performing a Unit Test
Step 1 Use the yang-offline-util.zip tool to generate empty NETCONF packets based on

the YANG model. Run the following command.

C:\Users\demo\yang-offline-util>java -jar yang-offline-util.jar generateSubtree .

If the command output is empty, the subtree.xml file is generated successfully.

Step 2 Open the subtree.xml file, and then set labels to proper values under
<application>.
   <hvpnService xmlns="http://example.com/HVPNService"> 
        <deviceList>

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 22



            <deviceName>NE1</deviceName>
        </deviceList>
        <deviceList>
            <deviceName>NE2</deviceName>
        </deviceList>
        <name>GigabitEthernet3/0/0.801</name>
        <des>des</des>
        <mtu>1500</mtu>
        <vpn_instance_name>LTE_OMC</vpn_instance_name>
    </hvpnService>

Step 3 Double-click the .py file in the test directory, and copy the code in the
<application> label to the <hvpnService> label. The following is an example.
import unittest
import sys
sys.path.insert(0, "../../Python")
from HVPNService.HVPNService import AocNcs_servicepoint

class Test(unittest.TestCase):
    xml = '''

   # Replace the following code in the hvpnService label based on actual situations.
    <hvpnService xmlns="http://example.com/HVPNService"> 
        <deviceList>
            <deviceName>NE1</deviceName>
        </deviceList>
        <deviceList>
            <deviceName>NE2</deviceName>
        </deviceList>
        <name>GigabitEthernet3/0/0.801</name>
        <des>des</des>
        <mtu>1500</mtu>
        <vpn_instance_name>LTE_OMC</vpn_instance_name>
    </hvpnService>
    '''

    def test_case1(self):
        result = AocNcs_servicepoint().ncs_map_test(self.xml)
        print(result)

if __name__ == "__main__":
    unittest.main()

Step 4 Run the test code to view the generated packet and check whether the output is
correct.

If the message "Process finished with exit code 0" is displayed, the unit test is
successful. Otherwise, check whether the attributes in the Jinija2 template
correspond to those in the service YANG model.

----End

5.4 Developing an SSP Package
Perform the following operations to develop a software package:

Step 1 In the PyCharm window, click Terminal at the bottom of the window to open the
CLI.

Step 2 Run the following command to move the exported private key file to the key
directory in the software package path:

(dem) C:\Users\demo\PycharmProjects\dem>copy path\to\privkey.asc .\key
\privkey.asc

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 23



Step 3 Run the makeFile.bat file in the bin directory in the software package path to
develop the software package.

Run the following commands in the CLI:

(dem) C:\Users\demo\PycharmProjects\dem>cd bin

(dem) C:\Users\demo\PycharmProjects\dem\bin>makeFile.bat

Step 4 If the following information is displayed in the command output, the software
package is developed successfully. In this case, you can go to the output directory
in the software package path to obtain the software package and its signature file.

2019-11-07 14:18:00,812 INFO
[com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign]
Zip: Execute success
2019-11-07 14:18:00,819 INFO
[com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign]
Zip: Clean dir success
2019-11-07 14:18:01,127 INFO
[com.huawei.ncecommon.extended.pkg.mgr.tools.common.FileUtil] - [Sign]
Key length:3072
2019-11-07 14:18:01,180 INFO
[com.huawei.ncecommon.extended.pkg.mgr.tools.common.FileUtil] -
[Sign]Generate signature file success.
2019-11-07 14:18:01,181 INFO
[com.huawei.ncecommon.extended.pkg.mgr.tools.tool.Main] - [ZipAndSign]
Sign: Execute success

----End

Troubleshooting
Question: What can I do if an error message "NO JAVA_HOME" is displayed when
I compile a software package?

Answer: You need to install the JDK software. You can download the JDK software
from the official website and install it. JDK1.8 is recommended.

Datacom Network Open Programmability
Development Guide 5 Developing an SSP Package

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 24

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html


6 Importing and Installing Software
Packages

After all software packages are developed, import them to the OPS and install
them for online commissioning or use.

6.1 System Login

6.2 Importing and Activating a Software Package

6.1 System Login
The open programmability system (OPS) provides two deployment modes: One is
that the system is integrated into iMaster NCE-IP and released as an app (service
open programmability). The app is deployed with iMaster NCE-IP. The other one is
that the system is released as an independent software package. The open
programmability mini software package is installed independently. This section
describes how to log in to the system using a browser.

Logging In to the OPS App

Step 1 Log in to the NCE O&M plane. Access the O&M plane at https://IP address of the
O&M plane:31943. Enter the user name and password and click Log In.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 25



Figure 6-1 Logging in to the NCE O&M plane

NO TE

● You need to change the password upon the first login. Keep the new password properly.
To improve system security, you are advised to periodically change the password to
prevent security risks such as brute force cracking.

● The IP address of the O&M plane is the client login IP address configured on the
Common_Service node. If the Common_Service node is deployed in a cluster, the IP
address is set to the floating IP address of the cluster. If the Common_Service node is
deployed in single-node mode, the IP address is the client login IP address of the node.

Step 2 After logging in to the system, click Service Programming on the homepage to
access the OPS.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 26



Step 3 On the home page, click the corresponding shortcut entry or click any shortcut
entry based on the actual application scenario to access the main menu.

----End

Logging In to the open programmability Mini System

Step 1 Log in to the developer community and download the open programmability mini
software package (AOCmini_V100R020C00.zip) on the resource download tab
page.

Step 2 Decompress AOCmini_V100R020C00.zip and double-click start.bat to start the
AOC mini service. The window is displayed.
C:\Users\swx944510\Desktop\AOCmini\envs\Product-AOCService\controller>..\..\..\rtsp\tomcat\bin
\catalina.bat start
Using CATALINA_BASE:   "C:\Users\swx944510\Desktop\AOCmini/envs/Product-AOCService/"
Using CATALINA_HOME:   "C:\Users\swx944510\Desktop\AOCmini/rtsp/tomcat"
Using CATALINA_TMPDIR: "C:\Users\swx944510\Desktop\AOCmini/envs/Product-AOCService/\temp"
Using JRE_HOME:        "C:\Users\swx944510\Desktop\AOCmini/rtsp/jdk/"
Using CLASSPATH:       "C:\Users\swx944510\Desktop\AOCmini/rtsp/tomcat\bin\bootstrap.jar;C:\Users
\swx944510\Desktop\AOCmini/rtsp/tomcat\bin\tomcat-juli.jar"

==========================================
AOCmini is starting, please wait a moment.

Step 3 Wait for about three minutes until the system is started.
2020-09-10 16:10:28 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:33 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:39 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:43 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:48 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:53 Console message: AOCmini is starting, progress: 95.70%
2020-09-10 16:10:58 Console message: AOCmini is starting, progress: 97.68%
2020-09-10 16:11:03 Console message: AOCmini is starting, progress: 97.68%
2020-09-10 16:11:08 Console message: AOCmini is starting, progress: 97.68%
2020-09-10 16:11:13 Console message: AOCmini started successfully, please visit https://127.0.0.1:32018/
aocwebsite/ in browser.

Step 4 Log in to the AOC mini system at https://127.0.0.1:32018/aocwebsite.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 27



Figure 6-2 Home page of the AOC mini system

Step 5 On the home page, click the corresponding shortcut entry or click any shortcut
entry based on the actual application scenario to access the main menu.

----End

6.2 Importing and Activating a Software Package
Step 1 Choose Package Repo from the main menu. Then, choose Package Management

from the navigation pane, and click Import on the displayed page.

Figure 6-3 Importing a software package

Step 2 On the displayed page, select the software package and signature file to be
imported.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 28



Figure 6-4 Selecting the software package to be imported

Step 3 Click Upload.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 29



Figure 6-5 Clicking Upload

After the software package is imported, you can view the imported package on
the Package Management page.

Figure 6-6 Software package import success

Step 4 Choose Package Repo from the main menu. Then, choose Package Management
from the navigation pane, and click  on the displayed page.

Figure 6-7 Installing a software package

Step 5 Wait for a few minutes until the software package is installed. If the software
package status changes to Activated, the software package is successfully
installed. If other information is displayed, rectify the fault based on the failure
information in the Details column and reinstall the software.

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 30



Figure 6-8 Software package import success

----End

Datacom Network Open Programmability
Development Guide 6 Importing and Installing Software Packages

Issue 02 (2020-12-30) Copyright © Huawei Technologies Co., Ltd. 31


	Contents
	1 Basic Knowledge
	1.1 Understanding Programming Languages and Protocols
	1.2 Software Package Structure
	1.3 Log Records
	1.3.1 Viewing Logs
	1.3.2 Setting the Log Level


	2 Development Process
	3 Development Preparation
	4 Development Environment Deployment
	4.1 Installing Python
	4.2 Installing the Open and Programmable SDK
	4.3 Installing an IDE
	4.4 Installing Gpg4Win and Generating Key Files for Signature
	4.5 Installing the Open Programmability Mini Software Package

	5 Developing an SSP Package
	5.1 Creating an SSP Package Template
	5.2 Developing an SSP Package
	5.2.1 Editing the SSP Configuration File
	5.2.2 Compiling a Service YANG Model
	5.2.3 Developing Mapping Code
	5.2.4 Developing a Jinja2 Template

	5.3 Verifying the SSP Package
	5.3.1 Verifying the YANG Files
	5.3.2 Performing a Unit Test

	5.4 Developing an SSP Package

	6 Importing and Installing Software Packages
	6.1 System Login
	6.2 Importing and Activating a Software Package


